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ABSTRACT 

We discuss the propagation of waves in a thermal plasma that co- 
exists with a tenuous gas of relativistic suprathermal particles. Low 
frequency modes such as the magnetosonic wave and Alfvkn wave ex- 
perience a damping due to the suprathermal particles. Waves propa- 
gating in such regions as the interstellar medium o r  the plasma of a 
supernova remnant would be significantly damped by the cosmic radia- 
tion fluxes as a result of this mechanism. Although the decay of dis- 
turbances in the interstellar medium (for example produced by stellar 
winds or old supernova remnants) would be hastened by this process, it 
is unlikely that it represents a significant energy transfer to the cosmic 
radiation. For the magnetosonic wave propagating directly across a 
magnetic field the damping has its origin in a cyclotron resonance be- 
tween a wave of frequency w ( J  << Q,2,) and those relativistic particles 
for which nl (nOl/y) 2 W ,  where Y = (1 - V ~ / C ~ ) - ~ / ~  and R O l , i s ,  the 
nonrelativistic ion cyclotron frequency. 
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DAMPING OF INTERSTELLAR PLASMA WAVES BY ' ' 

THE COSMIC RAY GAS 'PP', 
1 ,  

by Derek A. Tidman 
J. ' -  > I .,. 4 .  

1. INTRODUCTION 
* * e  

Many plasmas in nature contain both a thermal and a suprathermal population of par- 
ticles-. Some obvious examples are the cosmic radiation which coexists with the .interstellar 
o r  interplanetary plasma, o r  the fluxes of relativistic particles in the Cr@ nebula.or a 
solar flare, etc. It has been emphasized recently by Parker (1965) that the preseGe of such 
energetic particles in a thermal plasma can play an important role in the propagation prop- 
ert ies of waves in the medium. This may be the case even though the number density of 
the energetic particles is much less than that of the thermal plasma since the enw& den- 

In $his paper we point out that a relativistic suprathermal gas also gives rise to  
important damping of waves in a thermal plasma. This damping is automaticdy excluded 
if  one-uses moment or  fluid equations as  in Parker's treatment (1965). It emerges natur-" 
ally from the relativistic Vlasov-Maxwell equations in a similar way to  d e  coriVentiOha1 
Landau camping (see for example the discussion and references in Chapter 10 of Moni'. 
gomery h d  Tidman, 1964). We have calculated this damping for some "hydromagnktic 
modes," i.e., for waves of frequency much less than the ion cyclotron frequency since such 
waves,.are thought to be important for energy transport through the interstellar medium. 
However it should be b w n  in mind that such damping mechanismsps we are concerned 
with ham their origin in wave-particle resonance effects and are-likely to occur in one 
f w r n  o r  another for astrophysical plasma waves oyer much wider frequency ranges. They 

o a damping which is distinct from the viscous dampiqgtreated earlier (Parker, 
1955; Piddington, 1957). 

? *  

sity (pressure) of the suprathermal gas may still exceed that of the thermal plasma. ,. 

*. , I 

Consider first the mechanism for cyclotron damping (Stix, 1962) of a wave of fre- 
quency tur and wave number k propagating at an angle 8 across a magnetic field Bo.  As- 
sume the wave has a nonzero component of its electric vector perpendicular to Bo. Then 
some of the distribution of particles with velocity v will drift through the wave with just 
the right velocity along Bo to experience the wave electric field at a harmonic, n, of their 
cyclotron frequency. This occurs if  (see Figure 1) 

and gives rise to a resonant transfer of energy between the wave and these particles and 
to a net wave damping. We have only considered the ions for simplicity and Rol = elBo\/m, c , 
and y = (1 - vZ/cz)- lI2 . Suppose now one takes the nonrelativistic limit C -  m, y - 1, and 
considers the low-frequency hydromagnetic part of the spectrum, 0,' << at l .  It is then 
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clear uince necessarily I v,, i < c that only waves propagating in the range o < 0 < 0, 

= COS-* (noi/ kc) can experience such cyclotron damping. In this case there is 
ing for waves propagating directly across  Bo ( e  = v / 2 )  as is well known. 

damp- 

Suppose next we return to consider a relativistic situation in which the suprathermal 
tail eXtend8 well into the relativistic region. Then some particles in the range lv,, I < c 

can still satisfy the resonance condition if 1 (Or - nRoi/y)/k COS 81 < C .  This remains true 
as 0 + d 2  if we choose wr = "nOI/y. It gives rise to an essentially relativistic damping 
of low frequency waves (w: << R,?) by highly relativistic particles which experience Cy- 
clotron resonance with the wave at their reduced cyclotron frequency ni = ROi/y 2 wr < noi .  
The physical mechanism for this damping is discussed further following its derivation in 
muation (32). 

In the following sections we shall calculate the damping decrement for the two cases  
of perpendicular ( 0  = d 2 )  and parallel ( 0  = 0 )  propagation, although of course the same 
effect will occur for arbitrary angles 8. In particular we consider the low frequency 
mognetwonic wave (e = n/2)  and Alfv'en wave (8  = o) ,  both of which have phase veloci- 
ties wr/k = V, where V, is the Alfv'en speed. If the suprathermal particle energy density 
w becomes important the magnetosonic wave dispersion relation becomes modified. For 
the special case of perpendicular propagation it then corresponds to Parker's "supra- 
thermal mode" (Parker, 1965) with a dispersion relation wr/k % v, (1 t W/no mi v t  ) v2 
whem mi and no are the ion mass and thermal number density respectively. 

For the case of hydromagnetic waves propagating through the interstellar medium 
the damping which is produced by the cosmic ray gas depends sensitively on the direction 
of propagation 8. The damping lengths are also frequency dependent and range from a 
value much less than a light year up to indefinitely high values as ut - 0. The phenomenon 
thus provides a mechanism by which energy is continuously transferred from waves to 

Figure 1-Cone of wave vectors for which cyclotron wave 
damping can occur for a nonrelativistic plasma. 
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suprathermal particles in such regions. In this very wide sense it is thus related to the 
Fermi mechanism - just as the attendant plasma wave damping can be regarded as a 
relativistic form of cyclotron Landau damping. However in the classical Fermi mechan- 
ism particles a r e  visualized as being reflected in collisions with nonlinear wavefronts of 
magnetic field and travel freely between such collisions. In our case the suprathermal 
particles a r e  a part  of the plasma and are trapped along a magnetic field Bo together 
with the thermal plasma. A wave then propagates past these particles through the medium 
continuously depositing energy preferentially into the suprathermal particles through the 
cyclotron mechanism. The waves involved are natural modes of the plasma and one does 
not have to construct models for them. 

It should be pointed out of course that the Fermi mechanism is a more appropriate 
model for the stochastic acceleration of particles in a region of violent nonlinear plasma 
turbulence such as a supernova. Our calculations are appropriate to the dissipation of 
small-amplitude waves in the cosmic ray gas such as might be excited by the old decay- 
ing remnants of a supernova o r  by stellar winds, etc. Such wave damping however rep- 
resents only a small energy input into the cosmic ray gas compared to that available for 
particle acceleration in the early phase of violent turbulence in a supernova. 

2. BASIC EQUATIONS 

The relativistic Vlasov-Maxwell equations are, 

I a f a  a f a  + e a  ( E +  c 1 v x  B )  * dp ' f a  = 0 ,  a t  + v * d x  

a 1 ae z x E  = - - - '  c a t  

where f a  ( p )  is the momentum distribution function for the u t h  species and is normalized 
so that the probable number density na ( x ,  t )  of the uth species is 

where no is the average number density which is taken to be the same for both species 
(we shall only consider an electron-ion plasma for which u = e or  i). The relativistic 
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particle momentum is given by, 

Note that the distribution function f a  (p)  contains 
"suprathermal" populations of particles which may be present. 

the "thermal" and any relativistic 

Now in the usual way we consider the behaviour of a small amplitude disturbance in a 
homogeneous plasma in which there is a spatially uniform magnetic field Bo and for which 
the unperturbed distributions f Oa ( I  p I) a r e  isotropic functions of p .  Thus we write 
fa f O a  + f J 1 )  , E = 0 + E ( ' )  , B = Bo t B ( l ) ,  and linearize in the perturbations. The lin- 
earized Equations (1) - (3) can then be solved for an initial value problem by the method 
of Laplace-Fourier transforms. Defining 

X 

with Im(w) > 0, one finds a relation of the form R e = I 
for the transform of the electric field where I repre- 
sents initialvalue terms which we will not write out - 
they are listed in Montgomery and Tidman (1964). 

(20)  3. PROPAGATION ACROSS THE MAGNETIC FIELD 

We choose a co-ordinate system as shown in Fig- 
ure 2 with Bo along the z - a x i s  and consider a dis- 
turbance for which all the k vectors are along the 
x-axis .  The matrix relation for E then simplifies to, 

B o  

= t  

(2b )  

Figure 2-Co-ordinate system for prop- 
agation of waves across a uniform 
magnetic field. 
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pi2 dpi 0, (J,,' ) (5) 
(w - "0,) 

R Y Y  = - w2 + c 2  k 2  - zI dp,, 

and 

where there are two cyclotron frequencies, 

(9) 

and the arguments of the Bessel functions J, are kvl/oa = kpl/ma no,. It is also important 
to notice that the integrals may go through a singularity of ( w -  noa)-' ,  and they are de- 
fined as written for I m ( o )  > 0. They can be continued to Im(w)  < o in the usual way. 

Now the process of solving for E(') ( t  ) involves inverting equation (6) for €! and then 
the transforms (5). The field E(') then has components proportional to e 

zeros of JRI = o and also some contributions from branch cuts and possible singularities 
of I. We shall assume that the distributions are such that asymptotically for large t the 
disturbance in the plasma resolves itself into modes with frequencies given by the "dis- 
persion relation" IRI = o and that other contributions decay more rapidly in time. For 
more discussion of this point see  Montgomery and Tidman, 1964. 

- iw. t 
from the 

We have not listed R z z  in ('7) - (9) since it corresponds to  a pure electromagnetic 
transverse wave propagating across  Bo with its electric field E(') along Bo,  and is not of 
interest  to us here. The modes of present interest are those for which E;') and ~ y ( l )  are 
nonzero and which are described by the dispersion relation, 

Among these "mixed" modes (i.e., they a re  generally neither purely longitudinal or  trans- 
verse) is one which becomes the magnetosonic wave in the low frequency limit. 

5 



1 

Figure 3-Schematic plot of a momentum distribution function 
with a relativistic suprathermal tail. 

By inspection of (7) - (9) we see that in the nonrelativistic limit c - m, R, = no, and 
comes outside the momentum integrations. In this limit there is no 

(a - nna)-I occurring inside the range of momentum 

the factor ( W  - R,, ) 
Landau damping of these waves propagating across  B o .  The damping has its origin in a 
contribution from the singularity of 
integration which can only occur in the relativistic case. 

Magnetosonic Waves 

In this section we calculate the damping decrement for magnetosonic waves propa- 
gating through a plasma containing relativistic suprathermal particles. We represent the 
plasma by the distributions, 

where the constant K 

"thermal" plasma containing most of the particles, and the function g,  represents the 
tenuous relativistic suprathermal tail (see Figure 3). We have defined 

1 and o < ( 1  - K )  << 1. The 8-function represents a zero-temperature 

The constant K has been chosen to be the same for electrons and protons although gen- 
erally ge # g i  . This restriction is not important. Further all distributions a r e  normal- 
ized to unity, Le., 
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Making use of (12) in (7) - (9) the matrix elements become, 

Now we seek roots w = wI. ( k )  + i w i  (k )  of the. dispersion relation Rx,  R,, - R ; ~  Ryx  = 0. 

In order  to make this practical we shall make use of three small parameters: 

w .  
<< 1 (damping decrement is assumed small) 

1st << 1 (hydromagnetic wave limit) 
'0 i 

( 1  - K )  << 1 (suprathermal gas density is small) (18) 

Thus making use of (17) and noting that 
lows that R~~ has two terms of order u3/n,3, and ( 1  - K )  respectively. Thus the t e rm 
R x y  R y x  in the dispersion relation contains only te rms  0 w6 02, ( 1  - K ) ' ,  ( 1  - K )  w 3 / n 2 0 ]  all 
of which we shall neglect compared to the leading te rms  of R , ~  R ~ ~ .  One can verify that 
the roots are thus given approximately by R,, = Ryy = 0 .  It should be noted that in ap- 
plying condition (18) we shall also neglect the energy density of the suprathermal particle 
gas compared with B?/& although we are aware that the cosmic ray energy density is of 
the same order as the field energy density for the interstellar medium. We are princi- 
pally concerned with a calculation of the damping decrements and allowing for the supra- 
thermal energy density within the framework of the Vlasov equations generates dispersion 
relations considerably more complicated than those obtained by Parker (1965) without 
much alteration of the damping results for the modes we consider. 

w,'/",~ = o for an electron-ion plasma, it fol- 

c /  
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The magnetosonic mode corresponds to the dispersion relation 

2 

Ryy = 0 

and has a wave electric vector along the y axis, and as one easily verifies from Maxwell's 
equations, a wave magnetic vector along the z axis (see Figure lb). The magnetic lines 
of force thus crowd together without bending at the wave crests  perpendicular to the di- 
rection of propagation. 

Now the dispersion relation R y y  = 0 has the form (noting (17)) 

- u 2  ( ~ + K X Z ) +  c Z k Z  + w ( l - ~ ) F ( w )  = 0 

where 

Thus setting o or + i 
to zero and dropping terms of O(W;) or  0[wi  ( 1  - K ) ]  we readily find, 

in (19) and (20) and equating the real  and imaginary parts of (19) 

and for the damping decrement, 

The approximations in the last terms of (21) and (22) follow if the Alfven speed V, Satisfies 
v; << c 2 ,  which it usually does. 

In order to further simplify the expression for wi we need the function Fi  ( w r  + i o ) .  
Consider thequantity ( w -  nRa)- '  in (20). This contributes a pair of branch points at 
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pII = f i(m: c 2  t p;) which can be connected by a cut in the pII plane passing through the 
point at infinity, and a pair of simple poles at the zeros of (W - noa) : Regarding pl as 
fixed for the time being suppose plr (pl, n,  a) is a value of pII for which wr -do = 0. Then 
making a Taylor expansion for pII = p,; we find 

?r 

where yR = y(p13 pI:) = Thus the Plemelj formulas become in this case, 

where for the sake of definiteness we have assumedwr > 0, and I(nea)  = o if n e a s o  o r  
= 1 if nea > 0. The summation goes over the two roots pIP of or - nna = 0, which a r e  of 
equal magnitude and opposite s$n, and P is the principal value operation. It should also 
be noted that a zero of wLly - nRa only exists for a finite range 0 5 pl 5 po which is accounted 
for in (24) by defining J = 1 in this range and J = 0 for  pl > p, where yR = (1 + pt/m,Z c 2 ) 1 ' 2  . 

Now the complex part of F~ + iF, derives from the second term of (24). If we note that 
at P,, = pl;, y, = nROa/wr it follows from (22), (20), and (24) that 

Next, since p, = ( p12 t (P~: )~ )  'Iz we have 

so that 
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andthequaniitydga/dpl in (25) can be written as (pl/po)(aga (po)/dpi) because of the 
8-function in the integrand. Thus (25) reduces to 

'CI 

Finally we note that m: m,' looe 1 = m:,: InOi/, J-, (-2) = J, ( z ) ,  and po nc IR,, m a t h r  is 
independent of the species a. Thus, 

where the dimensionless number 3 depends on the details of the relativistic suprathermal 
particle distributions and is given by, 

Approximate Expressions and Physical Mechanism for the Damping of 
Magnetosonic Waves 

Consider the last integral in (30). If we are only interested in an approximate result 
we can split the range of integration up as follows, 

1 " V d  1 I, dx - 1 dx + I,, dx 
and use the asymptotic forms of the Bessel function in each range, i.e., 

and 



The contribution from the first range is then negligible, and that from the second part of 
(31) gives 

If further, ge' and gi' a r e  monotonically decreasing functions of p,, then due to the 
factor n-2 in (30) we can approximately neglect all terms except n = 1. Thus m i  reduces 
to 

where 

The physical mechanism giving rise to this damping decrement can be understood as 
follows. Consider a wave E s i n w ,  t of frequency wr propagating through the plasma and 
consider only its interaction with the ions for the present. An ion of momentum P, is in 
exact cyclotron resonance with the frequency w r  = noi/  yo ,  and those particles which a r e  
nearly in resonance (see Figure 4) have frequencies, 

Those particles of slightly less momentum P, - AP have a slightly higher cyclotron fre- 
quency wr + b , . If their phase in the electric field E s i n w ,  t is such that they lose energy 
initially they further increase their frequency R,,/y and get rapidly further from exact 
resonance. On the other hand particles with momentum P, - AP and initial phase such that 
they gain energy undergo a decrease in R,,/Y = W ,  + DW, which brings them into closer 
resonance for further acceleration. Thus the net result for particles in the range 
P, - AP < p < P, is a gain of energy from the wave. Similarly the net result  for particles in 
the range P, < p < P, + ap is a loss of energy to the wave. There a r e  more particles in the 
first range than the second which gives therefore a net damping of the wave with a damp- 
ing decrement w i  proportional to the derivative of the distribution function f o i .  

11 



Po - A P  Po Po + A P  
r 

Figure 4-Schematic plots of the variation of the ion momentum 
distribution and cyclotron frequency. 

4. PROPAGATION PARALLEL TO THE MAGNETIC FIELD - A L F V ~ N  WAVES 

The dispersion relation for circularly polarized cyclotron waves propagating through 
a relativistic Vlasov plasma is well known (see for example Eq. (10.75), Montgomery and 
Tidman, 1964), 

The f signs refer to right and left polarizations respectively. In the limit u2 <<R; this 
reduces to the case of Alfven waves propagating along the field Bo. 

Substituting the distribution functions (12) equation (34) becomes, 
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We shall now make the same approximations as those in (16) - (18) in order to calculate 
the small damping decrement for low-frequency Alfvkn waves by a tenuous suprathermal 
particle flux. We also assume that the zeros of (W - kvll f na) in (35) occur at values of vII  

such that (v,?) >> o:/k2 

Writing w = wr + i W i  and dropping small terms (35) then reads, 
v:, and therefore neglect the real  part w r  of w in this factor. 

Making use of the Plemelj formulas and the fact that g ,  is isotropic and vp << c 2  leads di- 
rectly to, 

and 

where the dimensionless number cp is given by 

with 

5. DISCUSSION 

Equations (32) and (37) represent the damping decrements for hydromagnetic waves 
propagating in directions perpendicular and parallel to the magnetic field Bo respectively. 
It is clear by inspection of these expressions that w;' >>a/  . This is because for parallel 
propagation waves interact with a lower energy part of the suprathermal particle spec- 
t rum than for  perpendicular propagation. The lower energy particles both gain energy 
more rapidly and a r e  likely to be more numerous. 
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In the following discussion we estimate some characteristic damping lengths for  
waves propagating through the interstellar medium. For this purpose let us  consider a 
general in'begral power law momentum spectrum for the flux of suprathermal protons, 

We shall assume this is valid for p > pmin , and neglect electron fluxes -x the preser 
Then equating N d p  to no V( 1 - K )  g i  (p)  pz where v = p/mi y is the speed of a proton of 
momentum P, we have for the momentum distribution function as defined in (12), 

If we define characteristic damping lengths L~ and L II for hydromagnetic waves propa- 
gating perpendicular and parallel to the magnetic field respectively, it readily follows 
from (32), (37), and (41), that 

provided 

and 

PO = ( + ) m i c > p m i n  , 

provided 

(43) 

The momentum conditions (43) and (45) are simply that those particles responsible for 
the damping should lie in the range p > pmin for which (40) is valid. The velocity vo is 

14 



that for an ion of momentum Po,  Le., v o  = Po/mi yo, and V, for an ion of momentum P, 

assuming however that p, = m i  V, . In equation (44) if  p, is in the relativistic range i.e., 
P, > mi c , we can replace v, by c to obtain an approximate result for L,, . 

- 

Corresponding propagation lengths for waves propagating at arbitrary angles to the 
magnetic field will probably lie between these two values. We see from the conditions 
(43) and (45) that the perpendicular propagation waves are damped only by highly rela- 
tivistic particles, whereas the parallel wave interacts with the low energy part of the 
suprathermal spectrum. We shall next consider as an example the interstellar medium, 
although it should be noted that in regions of stronger magnetic field and more intense 
suprathermal fluxes such as the Crab nebula, or a solar flare, these effects could be 
more important. There are also many forms of such damping for the wider frequency 
range of plasma waves. 

Damping of Waves in the Interstellar Medium by the Cosmic Ray Gas 

For highly relativistic protons the total energy E '2 pc and equation (40) can be writ- 
ten approximately N > C(mi c2/E)'. The values of r and e appropriate to various ranges 
are given by (Waddington, 1960), 

r : 1 . 4  , C 2 .5 f o r  4 < p c < 1 0 4 B e V  

r 2 , C '2 1,400 f o r  1O6<pc<1O9BeV (46) 

Assuming the following parameters for the interstellar medium: 
for the ionized component :' . 1  
V,/c 2 . 3  then leads to 

no = number density 
, and Bo 2 lo-' gauss, i.e., / R o e  I '2 175, we 2 1 . 8  104, 

1 . 4  

L l  2 0 0 ( 3  l ight  years 

for  R o i  > u r  > 

main constant then the numerical factor in this expression for L, is proportional to 
(no/Bo) . It thus decreases in regions of smaller no or larger Bo. 

ROi . Note that i f  the suprathermal spectrum parameters r and e re- 

Next consider the case of parallel propagation. Here we have the difficulty that we 
do not know what the very low energy part of the cosmic ray spectrum is in the inter- 
stellar medium. Thus assuming we know the values of C and 
to  pmin, it follows from (45) that we can only calculate the damping decrement for 

for equation (40) only down 
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Frequencies higher than this would be damped by unknown f l u e s  of lower energy parti- 
cles with p < p m i n .  

Suppose for  example we assume that the values in the top line of (46), i.e., C 2 . 5, 

1 .4 ,  a re  valid down to some value pmin. Then it follows from (44) and (45) that Alfvkn I- 
waves in the frequency range given by (47) a r e  damped in the cosmic ray gas in a length 
scale, 

r 1 0 i \ 1 . 4  
LI, (7, (2) light years 

Now we know that the spectrum (40) is a reasonable valid one down to pmin c Z 1 BeV . 
From this it follows that frequencies in the range < 2.10-4 noi  will be damped in a 
length scale which has a minimum value for TI (VA/c)(mi c /pmin)  nol = 2 .  io-' ROi of 
LII = lo-'  light years. 

b 

Further, suppose we were to assume the spectrum (40) remained valid down to 
pmin c = 100 MeV. This would lead to a damped frequency range w r  < 2. 

imum damping length at wr = 2.  

R o i  with a min- 
.-L. 

no I of L~~ = 1O-j light years. 

It is thus clear that if there exist any suprathermal particle fluxes in the range 
m i  c z  > pc > a few times the thermal energy, then these would heavily damp a wide fre- 
quency range (w, < nOi)  of Alfv'en waves. On the other hand the damping length L, for 
perpendicular propagation involves the highly relativistic particles and is considerably 
longer than Ll, , although for the range 
radius. It should be noted of course that the interstellar magnetic field Bo is nonuniform 
with some characteristic length scale 4. Thus strictly speaking our results only apply if 
L,l o r  L ,  a r e  much less than 4. However even if  the reverse  situation holds, i.e., 4 <Lll 

o r  L I for some frequencies, we would still expect that the same basic process of Cyclotron 
damping should occur for waves of wavelength h << 4 propagating through such regione. 
These waves would suffer refraction and propagate at varying angles across  Bo . 

noi  < or < rloi it is still less  than a galactic 

Since interstellar plasma waves a r e  damped by the cosmic ray gas it is natural to 
consider whether this contributes a significant energy imput to the cosmic radiation. We 
first note however that the waves discussed here are of small  enough amplitude that the 
cosmic ray particles a re  able to freely traverse the waves with only a minor perturba- 
tion in their trajectories. This is distinct from the reflection of energetic particles by a 
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nonlinear wavefront which is the scattering process basic to the statistical Fermi ac- 
celeration of cosmic ray particles. Suppose further we accept the theory that the bulk of 
the cosmic rays in our galaxy have their origin in the supernova explosions* (Ginzburg 
and Syrovatskii, 1964). It is then clear that there is much more energy available for 
energizing cosmic rays in the early violently nonlinear turbulence described by the 
Fermi mechanism than is available in the final decaying phase when the expanding super- 
nova remnant has degenerated to a region of small-amplitude turbulence. We conclude 
that this wave damping is not likely to be an important source of energy for the cosmic 
ray gas. However it could play an important role in the dissipation of disturbances in 
the interstellar medium caused by old supernova remnants, o r  stellar winds, etc. 

ACKNOWLEDGMENT 

The author is indebted to Drs. Frank C. Jones and Carl  Fichtel of the Goddard Space 
Flight Center for clarifying discussions on cosmic radiation. 

REFERENCES 

Ginzburg, V. L. and Syrovatskii, S. I. 1964, The Origin of Cosmic Rays, Pergamon Press ,  
New York. 

Montgomery, D. C. and Tidman, D. A. 1964, Plasma Kinetic Theory, McGraw-Hill, New 
York. 

Parker ,  E. N. 1965, University of Chicago Tech. Notes EFINS-65-19, EFINS-65-27. 

Parker ,  E. N. 1955, Phys. Rev. 99, 241. 

Piddington, J. H. 1957, Austr. J. Phys. 10, 515. 

Stix, T. H. 1962, Theory of Plasma Waves, McGraw-Hill, New York. 

Waddington, C. J. 1960, Progr.  in Nuclear Phys. 8, 1 

‘Ginzburg and Syrovatskii ( s ee  pages 326-329 of “The Origin of Cosmic Rays”) point out that with plausible assumptions for the 
acceleration and escape of suprathermal particles from bounded turbulent plasmas such as supernova shel ls ,  one can obtain a 
“universal” integral power law spectrum E-1 .5  for the energetic particles escaping from such plasmas into the interstellar medium. 

17 


